# **Sebastian Will**

Columbia University Department of Physics 922 Schapiro CEPSR 538 West 120th Street New York, NY 10027 USA

# **Employment**

| since 07/2016     | Assistant Professor, Columbia University                                                                                                          |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Ultracold atoms and molecules • quantum simulation • quantum information • dipolar many-body quantum systems • programmable atomic tweezer arrays |
| 07/2016 - 02/2018 | Visiting Professor, Massachusetts Institute of Technology                                                                                         |
| 11/2015 – 06/2016 | Research Scientist, Massachusetts Institute of Technology, group of Martin Zwierlein, quantum systems of ultracold molecules                      |
|                   | Quantum control of ultracold molecules • qubit storage in molecular nuclear spin • ultracold molecule-molecule collisions                         |
| 12/2011 – 10/2015 | Postdoctoral Research Fellow, Massachusetts Institute of Technology, group of Martin Zwierlein, first creation of ultracold dipolar NaK molecules |
|                   | Ultracold dipolar molecules of NaK in the absolute ground state ◆ high-finesse optical cavities ◆ precision molecule spectroscopy                 |

## **Education**

| 11/2011           | Graduation (Dr. rer. nat.), University of Mainz,<br>"Interacting bosons and fermions in three-dimensional optical lattice potentials", grade: summa cum laude (highest grade) |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Ultracold quantum gases • quantum simulation • Hubbard model • nonequilibrium quantum dynamics • beyond Hubbard model physics                                                 |
| 11/2006 – 11/2011 | Graduate Studies, University of Mainz & Ludwig Maximilian University Munich, group of Immanuel Bloch                                                                          |
| 11/2006           | <b>Diplom, University of Mainz,</b> "Atom optical experiments with ultracold sodium atoms", grade: with distinction (highest grade)                                           |
| 03/2005 – 08/2006 | Undergraduate Thesis Research, Massachusetts Institute of Technology, group of Wolfgang Ketterle                                                                              |
| 10/2001 - 09/2006 | Undergraduate Studies in Physics, University of Mainz                                                                                                                         |

## **Honors and Awards**

| 03/2019           | NSF CAREER Award 2019                                         |
|-------------------|---------------------------------------------------------------|
| 01/2018           | Lenfest Junior Faculty Development Grant                      |
| 02/2017           | Alfred P. Sloan Research Fellowship                           |
| 04/2014           | Infinite Kilometer Award of the MIT School of Science         |
| 04/2012           | Springer Theses Award                                         |
| 04/2007 - 08/2011 | Junior Fellow of the Gutenberg Academy at University of Mainz |
| 02/2002 - 11/2006 | Fellow of Studienstiftung des deutschen Volkes                |

### **Selected Publications**

**19 publications** in refereed journals, **4** in **Nature/Science**, **9** in **PRL/Nature Physics** Google Scholar: **h-index 18, number of citations >3200**, average citations per article >160

- 6 Zoe Z. Yan, Jee Woo Park, Yiqi Ni, Huanqian Loh, **Sebastian Will**, Tijs Karman, and Martin Zwierlein, *Resonant dipolar collisions of ultracold molecules induced by microwave dressing* arXiv:2003.02830 (2020) (submitted to Phys. Rev. Lett.)
- 5 Jee Woo Park, Zoe Z. Yan, Huanqian Loh, **Sebastian Will**, and Martin Zwierlein, Second-Scale Nuclear Spin Coherence Time of Trapped Ultracold <sup>23</sup>Na<sup>40</sup>K Molecules Science **357**, 372-375 (2017)
- **4 Sebastian Will**, Jee Woo Park, Zoe Z. Yan, Huanqian Loh, and Martin Zwierlein, *Coherent Microwave Control of Ultracold <sup>23</sup>Na<sup>40</sup>K Molecules* Phys. Rev. Lett. **116**, 225306 (2016)
  - Editors' Suggestion, featured in Physics
- 3 Jee Woo Park, **Sebastian Will**, and Martin Zwierlein, *Ultracold Dipolar Gas of Fermionic* <sup>23</sup>Na<sup>40</sup>K Molecules in Their Absolute Ground State Phys. Rev. Lett. **114**, 205302 (2016)

Editors' Suggestion, featured in Physics, printed 16 days after submission – one of the fastest papers in the history of Physical Review Letters

2 Sebastian Will,

From Atom Optics to Quantum Simulation - Interacting Bosons and Fermions in 3D Dimensional Optical Lattice Potentials

Springer Theses, Springer, Heidelberg, ISBN 978-3-642-33632 (2013)

>9000 downloads since January 2013 (www.bookmetrix.com)

1 Sebastian Will, Thorsten Best, Ulrich Schneider, Lucia Hackermüller, Dirk-Sören Lühmann, and Immanuel Bloch.

Time-Resolved Observation of Coherent Multi-Body Interactions in Quantum Phase Revivals Nature **465**, 197-201 (2010)

#### **Collaborators**

Francis Alexander, BNL • Ehud Altman, UC Berkeley • Ana Asenjo-Garcia, Columbia • Immanuel Bloch, MPQ/LMU Munich • Gabriele Ferrari, Trento • Bryce Gadway, UIUC • Alex Gaeta, Columbia • Layla Hormozi, BNL • Wolfgang Ketterle, MIT • Michal Lipson, Columbia • Huanqian Loh, NUS • Marco Loncar, Harvard • Jee Woo Park, POSTECH • David Pritchard, MIT • Marcos Rigol, Penn State • Daniel Savin, Columbia • Javad Shabani, NYU • Nanfang Yu, Columbia • Martin Zwierlein, MIT

### **Teaching and Advising**

- Instructor, Advanced Physics Lab (S2020), UN3081 Columbia University
- Instructor, Classical and Quantum Waves (F2019), UN2601 Columbia University
- Instructor, Seminar in Current Research Problems (S2018), UN3072 Columbia University
- Instructor, Applied Quantum Mechanics (S2017, F2017, S2019), GU4024 Columbia University
- Instructor, Graduate Student Seminar (F2016 S2018, F2019), GR6905 Columbia University
- Faculty Supervisor of (3) PhD and (14) undergraduate students (since 2017)
- Postdoctoral Supervisor of (9) PhD and (5) undergraduate students (2012 2016)
- Recitation Leader, Statistical Mechanics (S2014), Physics 8.044, MIT
- Teaching Assistant, Atomic Physics (F2006, F2008), Photonics (S2008)

#### Other activities

- Chair, New York Joint Quantum Symposium, annual workshop on quantum science and technology in collaboration with Columbia, NYU, Flatiron Institute (2018, 2019, 2020)
- Co-Chair, QClub, seminar series in collaboration with Columbia, NYU, and Flatiron Institute
- Co-Organizer, Columbia CM-AMO Seminar, bi-weekly seminar series (2019/20)
- Co-Organizer, Low Energy Challenges for High Energy Physics (PI Waterloo, CA) (2018)
- Referee for Nature, Science, Nature Physics, Physical Review Letters, and others
- Reviewer for National Science Foundation (NSF), European Research Council (ERC), Austrian Science Fund (FWF)
- Outreach, High School Teacher education, workshop program in collaboration with STEMteachersNYC to educate high school teachers in quantum science (from Fall 2020)
- Physics Department Colloquium Committee, Columbia University (2016, 2017, 2018)
- Graduate Admissions Committee, Columbia University (2017, 2020)
- PhD Thesis Defense Committee, Columbia University (11 defenses since 2016)
- Faculty Search Committee, Columbia University (2017-AMO, 2018-AMO, 2019-CM, 2020-AMO)

### **Main Scientific Achievements**

- First realization of microwave dressing of ultracold dipolar molecules (Publication 19)
- Observation of resonant dipole-dipole interactions of ultracold dipolar molecules (Publication 19)
- Realization of a qubit in the nuclear spin of ultracold NaK molecules. Observation of second-scale coherence times (Publication 18)
- Full quantum state control of ultracold NaK molecules (Publication 17)
- First creation of ultracold, chemically stable, dipolar molecules of NaK in the rovibrational ground state (Publications 15 and 16)
- Direct observation of coherent quench dynamics in a metallic many-body state of fermionic atoms (Publications 13 and 14)
- Observation of Feshbach resonances in a quantum gas mixture of bosonic Na and fermionic K atoms. Creation of weakly bound NaK Feshbach molecules (Publications 11 and 12)
- Observation of effective three-body interactions via long-lived collapse and revival dynamics of a lattice superfluid. Direct demonstration of physics beyond the Hubbard model in optical lattices (Publications 7 and 10)
- Concept of quantum revival spectroscopy for the precision measurement of atomic interactions (Publication 7)
- Equilibrium phases and nonequilibrium expansion dynamics of interacting lattice quantum gases of fermionic atoms (Publications 6 and 8)
- Observation of renormalized interactions beyond the Hubbard model in strongly interacting atomic Fermi-Bose mixtures in an optical lattice (Publication 4)
- Realization of the Fermi-Hubbard model with fermionic atoms in an optical lattice. Observation of metallic, band and Mott insulating phases by measuring the compressibility (Publication 3)
- First loading of ultracold atoms into a hollow-core photonic bandgap fiber (Publication 2)
- Observation of number squeezing and long coherence time in an atom interferometer with Bose-Einstein condensates on an atom chip (Publication 1)

(numbers refer to the publication list)